BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 48 (5), 1667—1668 (1975)

The Reaction of N-Hydroxylamino Compounds with Triphenylphosphine and CCl₄

Takehisa Ohashi¹⁾ and Rolf Appel Institute of Inorganic Chemistry, University of Bonn, 53 Bonn, West Germany (Received November 15, 1974)

Synopsis. In the reaction of triphenylphosphine with N-p-toluene-N-hydroxylamine and CCl_4 , p-azotoluene and p-azoxytoluene were formed as the main products. On the other hand, in the reaction using N-p-toluenesulfonyl-N-hydroxylamine, sulfonyliminophosphorane was obtained.

In conjunction with our studies^{2–8)} of the ternary system phosphine/ CCl_4 /ammonia derivatives, we wish to report a new method of synthesizing azo and azoxy compounds by the reaction of N-p-toluene-N-hydroxylamine (A) with Ph_3P and CCl_4 and a new method of synthesizing sulfonyliminophosphorane by the reaction of N-p-toluenesulfonyl-N-hydroxylamine (B) with Ph_3P and CCl_4 . It was found that p-azotoluene (1) and p-azoxytoluene (2) could easily be obtained in the reaction of (A) with Ph_3P and CCl_4 as is shown in Reaction (1).

$$\begin{split} & \text{MeC}_{6}H_{4}\text{NHOH} \, + \, \text{Ph}_{3}\text{P} \, + \, \text{CCl}_{4} \, \xrightarrow{\text{(Et)}_{3}\text{N}} \\ & \text{(A)} \\ & \text{MeC}_{6}H_{4}\text{N=NC}_{6}H_{4}\text{Me} \, (\mathbf{1}) \, + \, \text{MeC}_{6}H_{4}\overset{\dagger}{\text{N}} = \text{NC}_{6}H_{4}\text{Me} \, \, (\mathbf{2}) \\ & + \, \text{Ph}_{3}\text{PO} \, (\mathbf{3}) \, + \, \text{MeC}_{6}H_{4}\text{NH}_{2} \, \, (\mathbf{4}) \\ & + \, (\text{Ph}_{3}\text{P}^{+}\text{CH}_{2}\text{Cl})\text{Cl}^{-} \, (\mathbf{5}) \, + \, \text{CHCl}_{3} \, + \, (\text{Et})_{3}\text{NHCl} \quad (\mathbf{1}) \end{split}$$

In this reaction, the formation of CHCl₃ was observed under several conditions (yields: 35—40%); besides the main products, two by-products, 4 and 5, were obtained,

and triphenylphosphine oxide (3) was isolated in high yields. However, no N-p-tolueneiminotriphenylphosphorane was found in this reaction. The results are presented in Table 1. On the other hand, N-p-toluenesulfonyliminotriphenylphosphorane (1') was obtained as the main product of the reaction of (B) with Ph_3P and CCl_4 (Reaction (2)).

$$\begin{split} \text{MeC}_6\text{H}_4\text{SO}_2\text{NHOH} + \text{Ph}_3\text{P} + \text{CCl}_4 &\longrightarrow \\ \text{(B)} \\ \text{MeC}_6\text{H}_4\text{SO}_2\text{N=PPh}_3 \ (\mathbf{1}') + (\text{Adduct of Ph}_3\text{PO and} \\ \text{MeC}_6\text{H}_4\text{SO}_2\text{NHOH}) \ (\mathbf{2}') + \text{Ph}_3\text{PO} \ (\mathbf{3}') + \text{CHCl}_3 \\ + (\text{Ph}_3\text{P}^*\text{CH}_2\text{Cl})\text{Cl}^- \ (\mathbf{4}') \end{split} \tag{2}$$

Results obtained in Reaction (2) are described in Table 2.

In all the reactions described in Table 2, the formation of CHCl₃ was also observed, and the yield of CHCl₃ in the reaction using 2 mol of triphenylphosphine to (B) was higher (51.5%) than that (40.5%) observed in the reaction using an equimolar triphenylphosphine. Besides the main product (1'), the (2') compound, triphenylphosphine oxide (3') and chloromethyltriphenylphosphonium chloride (4') were isolated, but no triphenylphosphine oxide was formed when triphenylphosphine equimolar to (B) was used. The new compound (2') was estimated to be a hydrogen-bonded adduct, as is shown below:

Table 1. The reaction of p-tolyl-NHOH with Ph₃P and CCl₄

MeC ₆ H ₄ NHOH (mmol)	Ph ₃ P	CCl₄	Et ₃ N	Solvent ^{b)}	Yields of products ^{a)} %						
					1	2	3 °)	4	5 ^{d)}	6	7
10	10	10	10	A	39.1	27.4	88.8	15.9	8.7	61.6	_
10	10	10	10	В	28.6	39.8	92.3	15.0	6.9	65.2	
10	5	5	5	Α	20.0	35.4	89.9	12.2	4.6	58.1	
10	5	5	5	В	11.4	47.8	97.1	16.8	3.5	72.5	
10	10	10		${f A}$	28.6	19.5	79.1	7.5	15.0		26.4

a) 1: Azotoluene, 2: Azoxytoluene, 3: Ph₃PO, 4: p-Toluidine, 5: (Ph₃P+CH₂Cl)Cl-, 6: (Et)₃N+HCl-, 7: p-Toluidine hydrochloride. b) A: 1,2-Dichloroethane, B: Acetonitrile. c) The yields of 3 were calculated based on Ph₃P used. d) The yields of 5 were calculated based on CCl₄ used.

Table 2. The reaction of p-tosyl NHOH with Ph₃P and CCl₄

Tosyl-NHOH (mmol)	$\mathrm{Ph_{3}P}$	CCl ₄	Solvent ^{b)}	React. temp (°C)	React. time (min)	Yields of products ^{a)} %			
						Ĩ'	2′	3′	4′
10.7	10.7	10.7	В	60	60	45.3	32.7		12.2
10.7	10.7	10.7	Α	40	150	45.5	30.1	-	14.0
10.7	21.4	10.7	В	60	60	62.3	11.0	41.0	20.1
10.7	21.4	10.7	\mathbf{A}	40	150	69.3	4.0	46.9	24.5

a) 1': MeC₆H₄SO₂N=PPh₃, 2': Adduct of Tosyl-NHOH and Ph₃PO, 3': Ph₃PO, 4': (Ph₃P+CH₂Cl)Cl. b) A: CH₂Cl₂, B: 1,2-Dichloroethane. c) Yields of 1', and 2' were calculated based on Tosyl-NHOH used. Yields of 3' were calculated based on Ph₃P used. Yields of 4' were calculated based on CCl₄ used.

$$\begin{array}{c|c} -O & H \\ \hline -O & N \\ Ph_3 P & C_6 H_4 Me \\ \hline O & O \end{array}$$

It was confirmed that the same compound can be obtained quantitatively by the reaction of triphenylphosphine oxide with (B). Similar hydrogen-bonded interactions have recently been reported⁹⁾ in the study of 1:1 adducts obtained in the reaction of triarylphosphines with p-toluenesulfonamide.

It is supposed that the first step in the reactions of N-hydroxylamino compounds with Ph₃P and CCl₄ is the formation of the intermediate phosphonium compounds (I-a) and (I-b) resulting from the reaction of (A) or (B) with the Ph₃P-CCl₄ complex,²⁻⁸⁾ as is shown in Reaction (3):

RNHOH (A) + $(Ph_3P^+Cl)CCl_3^-$

$$\begin{cases} (Ph_3P^+Cl, -ONHR) \\ or + CHCl_3 & (3) \\ (Ph_3P^+Cl, -N(OH)R) \end{cases}$$

I-a (R; MeC_6H_4) I-b (R; $MeC_6H_4SO_2$)

In the reaction of (A) with Ph₃P and CCl₄, the nucleophilic attack of (A) on the nitrogen of the intermediate (I-a) can be assumed to be as is shown in Reaction (4):

(A)
$$\longrightarrow \operatorname{MeC_6H_4N=NC_6H_4Me} + \operatorname{Ph_3PO} \\ + \operatorname{HCl} + \operatorname{H_2O} \quad (\operatorname{Path} a)$$

$$\longrightarrow \operatorname{MeC_6H_4NO} + \operatorname{MeC_6H_4NH_2} \\ + \operatorname{Ph_3PO} + \operatorname{HCl} \quad (\operatorname{Path} b)$$
(4)

Azotoluene was supposed to be formed via Path a, while azoxytoluene was estimated to be formed via the reaction of nitrosotoluene, which is formed via Path b, with Ph₃P, as has been reported by Cadagon¹⁰ and via the reaction of nitrosotoluene with (A), as has been reported by Bamberger.¹¹ The deoxygenation of azoxytoluene¹² with Ph₃P did not occur under the mild conditions used in this investigation.

On the other hand, in the reaction of (B) with Ph₃P and CCl₄, the nucleophilicity of (B) is not so strong; therefore, the nucleophilic attack of triphenylphosphine on the nitrogen of the intermediate (I-b) was assumed to form the 1' compound and triphenylphosphine oxide. Further, triphenylphosphine oxide reacts simultaneously with (B) to form the adduct (the 2' compound in Reaction (2)).

Experimental

Materials. N-p-Toluene-N-hydroxylamine (A) was prepared as has been reported by Bamberger. N-p-Toluenesulfonyl-N-hydroxylamine (B) was prepared as has been reported by Meyer. 4)

General Procedure of the Reaction of A with Ph₃P and CCl₄.

Into a solution (solvent: acetonitrile or 1,2-dichloroethane) of A and CCl₄, a solution of Ph₃P and triethylamine was stirred, drop by drop, under an atmosphere of argon at room temperature; a slight exothermic reaction was observed. The solution

was then heated at 55 °C for an additional 1 hr. The solvent was subsequently evaporated, and the semi-solid or oily residue was analysed by fractional crystallization and NMR analysis. The formation of chloroform was confirmed qualitatively and quantitatively from the NMR spectra of the distillates. The 4,4'-azotoluene, p-azoxytoluene, triphenylphosphine oxide, p-toluidine, and (chloromethyl)triphenylphosphonium chloride were identified by comparing them with the authentic compounds.

General Procedure of the Reaction of B with Ph₃P and CCl₄. A turbid dichloromethane or 1,2-dichloroethane solution of B and Ph₃P was warmed to 35—40 °C, and then CCl₄ was added to the solution. The mixture was stirred under an atmosphere of argon, keeping the temperature at 40 °C (in dichloromethane) or 60 °C (in 1,2-dichloroethane). From the reaction mixture, N-p-toluenesulfonyliminotriphenylphosphorane, triphenylphosphine oxide, and (chloromethyl)triphenylphosphonium chloride were isolated and identified by comparison with authentic compounds. When the reaction was carried out in the presence of triethylamine, for example, in the reaction using 2 mol of Ph₃P, CCl₄ and triethylamine equimolar to B, the same products as in the reaction without triethylamine were obtained, but the yields of the 1' compound were low (13%).

Adduct of Triphenylphosphine Oxide and N-p-Toluenesulfonyl-N-hydroxylamine. After the removal of the 1' compound from the reaction mixture, the residue was dissolved in benzene at 60 °C and filtered. A white precipitate obtained on cooling the filtrate was washed with ether and recrystallized from benzene. Mp 158 °C. IR: 3140, 2880, 1440, 1340, 1180. 1155, 730 and 548 cm⁻¹. NMR: (τ in CD₃OD) 2.10—2.70 (m, 19H) and 7.63 (s, 3H). ³¹P NMR: (δ in MeOH) —31.3 ppm (relative to H₃PO₄). Found: C, 64.78; H, 5.20; N, 3.08; O, 13.42; P, 6.21; S, 7.12%. Calcd for C₂₅H₂₄NO₄-PS: C, 64.51; H, 5.20; N, 3.01; O, 13.75; P, 6.44; S, 6.89%.

The Authors wish to thank Alexander von Humboldt-Stiftung for his help with our research.

References

- 1) Present adress: Central Research Laboratory, Kanegafuchi Chemical Industry Co., Ltd. 1–2, Yoshida-cho, Hyogoku, Kobe, Japan.
- 2) R. Appel, R. Kleinstück, and K. D. Ziehn, *Chem. Ber.*, **104**, 1030 (1971).
- 3) R. Appel, R. Kleinstück, and K. D. Ziehn, *Angew. Chem. Int. Ed. Engl.*, **10**, 132 (1971).
- 4) R. Appel, R. Kleinstück, and K. D. Ziehn, *Chem. Ber.*, **104**, 1335 (1971).
- 5) R. Appel, K. Warning, and K. D. Ziehn, *ibid.*, **106**, 3450 (1973).
- 6) R. Appel, K. D. Ziehn, and K. Warning, *ibid.*, **106**, 2093 (1973).
 - 7) R. Appel and R. Kleinstück, ibid., 107, 5 (1974).
- 8) R. Appel, K. Warning, and K. D. Ziehn, *ibid.*, **107**, 698 (1974).
- 9) D. W. Allen, F. G. Mann, and J. C. Tebby, *J. Chem. Soc.*, **1972**, 2793.
- 10) P. J. Bunjan and J. I. G. Cadagon, J. Chem. Soc., 1963, 42.
- 11) E. Bamberger, Ber., 27, 1552 (1894).
- 12) T. Mukaiyama, H. Nambu, and M. Okamoto, J. Org. Chem., 27, 3651 (1962).
- 13) E. Bamberger and Rising, Ann., 316, 280 (1901).
- 14) E. V. Meyer, J. Prakt. Chem., 63, 170 (1901).